代表性论文与著作 |
通讯作者(*)或第一作者: 1. Liu H, Jing N, Li F, Wang K, Tang J, Zhao Q, Zhang Y, Noushahi HA, Xu R, Wang X, Zhu W*, Feng S*, Shu S*, Mei Z. (2024). An omics-based characterization of Wolfiporia cocos reveals three CYP450 members involved in the biosynthetic pathway of pachymic acid. Communications Biology. 7: 666. 2. Zhu W, Dong H, Xu R*, You J*, Yan D-z, Xiong C, Wu J, Bi K*. (2023). Botrytis cinerea BcCDI1 protein triggers both plant cell death and immune response. Frontiers in Plant Science. 14: 1136463. 3. Zhu W*, Yu M, Xu R, Bi K, Yu S, Xiong C, Liu Z, Sharon A, Jiang D, Wu M, Gu Q, Gong L, Chen W, Wei W*. (2022). Botrytis cinerea BcSSP2 protein is a late infection phase, cytotoxic effector. Environmental Microbiology. 24(8): 3420–3435. 4. Zhu W, Liu Y, Tang J, Liu H, Jing N, Li F, Xu R*, Shu S*. (2022). Functional analysis of sterol O-acyltransferase involved in the biosynthetic pathway of pachymic acid in Wolfiporia cocos. Molecules. 27: 143. 5. 周鹏,朱闻君*. (2020). 湖北枣阳烟区烟叶赤星病病原鉴定. 安徽农业科学,J. Anhui Agric. Sci. 48(3): 146-148, 192. 6. Zhu W, Xu X, Peng F, Yan D, Zhang S, Xu R, Wu J, Li X, Wei W*, Chen W*. (2019). The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Plant Science. 283: 1–10. 7. Zhu W*, Wei W, Zhang S, Zheng Y, Chen P, Xu X. (2018). The phosphatome of medicinal and edible fungus Wolfiporia cocos. Current Microbiology. 75: 124–131. 8. Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Sharon I, Savidor A, Eizner E, Valerius O, Braus G, Bowler K, Bar-Peled M, Sharon A*. (2017). BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiology. 175: 438–456. 9. Zhu W*, Wei W, Wu Y, Zhou Y, Peng F, Zhang S, Chen P, Xu X. (2017). BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production, and stress tolerance in Botrytis cinerea. Frontiers in Microbiology. 8: 1807. 10. Zhu W*, Zhou M, Xiong Z, Peng F, Wei W*. (2017). The cAMP-PKA signaling pathway regulates pathogenicity, hyphal growth, appressorial formation, conidiation, and stress tolerance in Colletotrichum higginsianum. Frontiers in Microbiology. 8: 1416. 11. Wei W, Shu S, Zhu W*, Xiong Y, Peng F. (2016). The kinome of edible and medicinal fungus Wolfiporia cocos. Frontiers in Microbiology. 7: 1495. 12. Wei W, Xiong Y, Zhu W*, Wang N, Yang G, Peng F. (2016). Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: role in growth, cell wall integrity, colony melanization and pathogenicity. Frontiers in Microbiology. 7: 1212. 13. Zhang S, Hu B, Wei W, Xiong Y, Zhu W*, Peng F, Yu Y, Zheng Y, Chen P*. (2016). De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes during the early stage of sclerotial growth. Frontiers in Microbiology. 7: 83. 14. Wu Y, Zhu W (Co-first author), Wei W, Zhao X, Wang Q, Zeng W, Zheng Y, Chen P*, Zhang S*. (2016). De novo assembly and transcriptome analysis of sclerotial development in Wolfiporia cocos. Gene. 588: 149–155. 15. Sun Q, Wei W, Zhu W*, Zhang S, Song J, Zheng Y, Chen P*. (2015). Genetic diversity of Chinese Wolfiporia cocos cultivars revealed by phenotypic traits and ISSR markers. Mycological Progress. 14: 61. 16. Sun Q, Wei W, Zhao J, Song J, Peng F, Zhang S, Zheng Y, Chen P, Zhu W*. (2015). An efficient PEG/CaCl2-mediated transformation approach for the medicinal fungus Wolfiporia cocos. Journal of Microbiology and Biotechnology. 25: 1528–1531. 17. Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D*. (2013). A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE. 8: e53901. 非通讯作者或非第一作者: 1. Wang P, Wang Y, Hu Y, Chen Z, Han L, Zhu W, Tian B, Fang A, Yang Y, Bi C, Yu Y. (2024). Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. Plant J. 118: 90–105. 2. Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. (2022). A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun. 13: 2213. 3. Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W, Masrati G, Sharon A* (2021). The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat Commun. 12: 2166. 4. Doehlemann G*, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectrum 5(1): FUNK-0023-2016. doi: 10.1128/microbiolspec.FUNK-0023-2016. 5. Liu X, Wei W*, Zhu W, Su L, Xiong Z, Zhou M, Zheng Y, Zhou D-X* (2017) Histone deacetylase AtSRT1 regulates metabolic flux and stress response in Arabidopsis. Mol Plant. 10: 1510–1522. 6. Yu Y*, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W (2017) Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Mol Plant Pathol 18: 1052–1061. 7. Eizner E, Ronen M, Gur Y, Gavish A, Zhu W, Sharon A* (2017) Characterization of Botrytis-plant interactions using PathTrack© - an automated system for dynamic analysis of disease development. Mol Plant Pathol 18: 503–512. 8. Wei W, Zhu W, Cheng J, Xie J, Jiang D, Li G, Chen W, Fu Y* (2016) Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci Rep 6: 24325. 9. Shlezinger N, Israeli M, Mochly E, Oren-Young L, Zhu W, Sharon A* (2016) Translocation from nuclei to cytoplasm is necessary for anti A-PCD activity and turnover of the Type II IAP BcBir1. Mol Microbiol 99: 393–406. 10. Zhang S, Wang R, Zeng W, Zhu W, Zhang X, Wu C, Song J, Zheng Y, Chen P* (2015) Resource investigation of traditional medicinal plant Panax japonicus (T.Nees) C.A. Mey and its varieties in China. J Ethnopharmacol 166: 79–85. 11. Zhang S, Wu Y, Jin J, Hu B, Zeng W, Zhu W, Zheng Y*, Chen P* (2015) De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoi saponin biosynthesis. Biochem Bioph Res Co 466: 450–455. 12. Wei W, Zhu W, Cheng J, Xie J, Li B, Jiang D, Li G, Yi X, Fu Y* (2013) CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasitism and conidiation by sclerotial parasite Coniothyrium minitans. Appl Environ Microb 79: 3658–3666. |